Главная страница  История развития электросвязи 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 [ 47 ] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

Канал НДС (система ПДС)

Рис. 9.1. Тракт передачи дискретных сообщений

ной связи под сообщением будем понимать некоторую последовательность отсчетов квантованного аналогового сигнала, передаваемую в канале связи в виде последовательности кодовых комбинаций (см. гл. 3).

Информация, содержащаяся в сообщении, передается получателю по каналу передачи дискретных сообщений (ПДС) (рис. 9.1).

Сообщение поступает от источника дискретных сообщений, который характеризуется алфавитом передаваемых сообщений А. Пусть объем этого алфавита (число символов алфавита) К, а вероятность выдачи символа а, е /\ (16 /б К ) р(а,). К числу основных информационных характеристик сообщений относятся количество информации в отдельных сообщениях, энтропия и производительность источника сообщений. [1-4].

Количество информации в сообщении (символе) определяется в битах - единицах измерения количества информации. Чем меньше вероятность появления того или иного сообщения, тем большее количество информации мы извлекаем при его получении. Если в памяти источника имеются два независимых сообщения (ai и Эг) и первое из них выдается с вероятностью р{а) =1, то сообщение ai не несет информации, ибо оно заранее известно получателю.

Было предложено определять количество информации, которое приходится на одно сообщение а выражением

(a,) = logj

= -1од,р(а,).

Среднее количество информации 1-1{А), которое приходится на одно сообщение, поступающее от источника без памяти, получим, применив операцию усреднения по всему объему алфавита [1]:

m/) = -5:p(a, )1од,р(а,).

(9.1)

Выражение (9.1) известно как формула Шеннона для энтропии источника дискретных сообщений. Энтропия - мера неопределенности

Для телефонного сообщения объем алфавита будем определять как число уровней квантования аналогового (непрерывного) сигнала, снимаемого с выхода микрофона. Обычно К =256.



Преобразователь сообщения в сигнал

Система НДС

Преобразователь

сигнала в

сообщение

Рис. 9.2. Принцип передачи сообщений

В поведении источника дискретных сообщений. Энтропия равна нулю, если с вероятностью единица источником выдается всегда одно и то же сообщение (в этом случае неопределенность в поведении источника сообщений отсутствует). Энтропия максимальна, если символы источника появляются независимо и с одинаковой вероятностью.

Определим энтропию источника сообщений, если /С = 2 и р(а,) = р(aj) = 0,5. Тогда

Н(А) = -ip(a, )\од Р(а,) = -0,51090,5-0,51090,5 = = 1 бит/сообщ.

Отсюда 1 бит - это количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника состоит из двух равновероятных символов.

Если в предыдущем примере взять р(а,)?ь р(а2), то Н(А) < 1

бит/сообщ. Таким образом, один бит - максимальное среднее количество информации, которое переносит один символ источника дискретных сообщений в том случае, когда алфавит источника включает два независимых символа.

Среднее количество информации, выдаваемое источником в единицу времени, называют производительностью источника

Н(/А) = Н(>А)/Г (бит/с), (9.2)

где Т - среднее время, отводимое на передачу одного символа (сообщения).

Для каналов передачи дискретных сообщений вводят аналогичную характеристику - скорость передачи информации по каналу R. Она определяется количеством бит, передаваемых в секунду. Максимально возможное значение скорости передачи информации по каналу называется пропускной способностью канала и обозначается С.

Сообщение, поступающее от источника, преобразуется в сигнал, который является его переносчиком в системах электросвязи. Система электросвязи обеспечивает доставку сигнала из одной точки пространства в другую с заданными качественными показателями. Схема передачи сообщений, в состав которой входят преобразователи сообщение-сигнал-сообщение, приведена на рис. 9.2.




Рис. 9.3. Непрерывный сигнал

2 -1 -

k к k te t

Рис. 9.4. Непрерывный сигнал дискретного времени

f Виды сигналов. Различают четыре вида сигналов: непрерывный непрерывного, непрерывный дискретного времени, дискретный непрерывного и дискретный дискретного времени [4].

Непрерывные сигналы непрерывного времени называют сокращенно непрерывными (аналоговыми) сигналами. Они могут изменяться в произвольные моменты, принимая любые значения из непрерывного множества возможных значений (рис. 9.3). К таким сигналам относится и известная всем синусоида.

Непрерывные сигналы дискретного времени могут принимать произвольные значения, но изменяться только в определенные, наперед заданные (дискретные) моменты tz, fe. - (рис. 9.4). Дискретные сигналы непрерывного времени отличаются тем, что они могут изменяться в произвольные моменты, но их величины принимают только разрешенные (дискретные) значения (рис. 9.5).

Дискретные сигналы дискретного времени (сокращенно дискретные) (рис. 9.6) в дискретные моменты времени могут принимать только разрешенные (дискретные) значения.


Рис. 9.5. Дискретный сигнал непрерывного времени

4 ts t4 ts t

Рис. 9.6. Дискретный сигнал



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 [ 47 ] 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

© 2000 - 2018 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.