Главная страница  История развития электросвязи 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 [ 38 ] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215


0,4 0,8 1,2 1,4 1,8 Длина волны, мкм

Рис. 7.8. Ослабление света в стеклянном волокне

волны передаваемого излучения. Чем короче длина волны, тем выше рассеяние света.

Если посмотреть на график ослабления света в стеклянном волокне (рис. 7.8), построенный для различных длин волн, то на нем можно увидеть так называемое окно прозрачности, в котором ослабление сравнительно небольшое.

Следует сказать, что в технике связи ослабление измеряют обычно не в разах , а в специальных единицах - белах (в честь изобретателя телефона А.Г. Белла). Чтобы получить белы , нужно прологарифмировать разы . Эти единицы особенно удобны, когда речь идет об ослаблении в огромное число раз. Например, если ослабление в разах составляет миллион, то в белах - это всего 6 (Ig 1 ООО ООО = 6). Ослабление в 1000 раз соответствует 3 Б (Ig 1000 = 3). Дальше все понятно: 100 раз - это 2 Б, 10 раз - 1 Б. Перевод в белы величины 3 раза даст 0,5 Б, а величины 1,05 раза - 0,02 Б. Для практики бел - слишком крупная единица, поэтому чаще используют более мелкую - децибел (1 Б = 10 дБ подобно тому, как 1 м = 10 дм).

Таким образом, и завоевания в области прогрессивных стеклотех-нологий можно в полной мере оценивать децибелами (на сегодня ослабление света, или потери его интенсивности, в волокне составляет 0,2 дБ/км).

Однако взглянем еще раз на окно прозрачности . Оно охватывает длины волн, расположенные в диапазоне ближнего инфракрасного излучения (0,85...1,8 мкм), т.е. в области невидимого света. Правда, внутри окна для некоторых излучений (0,95; 1,24; 1,39 мкм) наблюдаются всплески ослабления. Это вызвано тем, что колебания света попадают в такт (в резонанс) с колебаниями ионов вредных гидроксильных групп ОН - непрозрачной компоненты стекла,







- /71

6 -

Рис. 7.9. Распространение света в стекловолокне

от которой, как правило, не удается избавиться даже при изготовлении сверхчистых стекол. Возникает резонансное поглощение света ионами этих групп.

Теперь становится понятным, почему в световодах предпочитают иметь дело с волнами невидимого света, за исключением, конечно, тех волн, которые сильно поглощаются.

Известно, что скорость света v в прозрачном веществе меньше скорости света с = 300 ООО км/с в вакууме. Отношение c/i/обозначили буквой п и назвали показателем преломления света в веществе. Но разве можно сломать световой луч? Оказывается можно. Опустите в стакан с водой ложку (рис. 7.9). На границе раздела между воздухом и водой ложка покажется вам сломанной. Это случилось потому, что на границе воздуха и воды световые лучи из-за разных скоростей распространения (в воде скорость в 1,33 раза меньше, чем в воздухе) преломились.

Итак, когда луч света попадает на границу раздела двух веществ с показателями преломления = c/i/, и Лг = c/i/g (у воздуха этот показатель равен 1), возникают отраженный луч (помните, угол падения равен углу отражения ?) и преломленный лучи. Первый, отражаясь от поверхности, остается в веществе, а вот второй выходит за его пределы. Для вещества - это потери, рассеяние света.

В оптике существует формула, по которой, зная показатели преломления п\ и Пг веществ и угол 6 падения (отражения) луча, можно найти, под каким углом бпр он преломляется:

sinGp = -sinG.

Конечно, при передаче света по волокну хотелось бы, чтобы свет только отражался от границы и не рассеивался за пределы вещества в виде преломленных лучей. Это начинает происходить с того момен-



та, когда угол Gpp достигает 90°: наступает полное отражение. Приведенная выше формула позволяет вычислить, под каким углом луч должен падать при этом на границу раздела веществ. Например, волокно из стекла с показателем ni = 1,46, помещенное в воздухе (Лг =1), будет полностью отражать те световые лучи, которые попадают на его боковую поверхность под углом G > 45°.

Не следует забывать, что свет вводят в торец волокна. Здесь картина иная: на боковую поверхность волокна будет падать луч, преломленный его торцом. И падать он должен так, чтобы полностью отражаться от боковой поверхности (см. рис. 7.9). Возникает вопрос: под каким же углом надо вводить луч в волокно? Оказывается, что в стеклянных волокнах, показатель преломления которых равен или больше 1,46, все световые лучи, попадающие на торец, направляются вдоль волокна и свет не рассеивается. К ним относятся и волокна из кварцевого стекла, показатель преломления которых как раз равен 1,46.

Однако, голые волокна в оптических кабелях не используются. И вот по какой причине. Для сохранения оптических свойств волокна в условиях эксплуатации необходимо защищать его поверхность от влаги и от истирания во время операций намотки и изготовления кабеля. Кроме того, голые стеклянные волокна при образовании на их поверхности микротрещин могут самопроизвольно обрываться; это связано с концентрацией механических напряжений на поверхности волокна. Поэтому стеклянную нить помещают внутрь защитного пластмассового покрытия. Чтобы не нарушить условия распространения световой волны в волокне (пластмасса это не воздух), его делают из двух слоев стекла: внутренний слой образует сердцевину волокна, а внешний слой является оболочкой. Показатель преломления оболочки делают ниже показателя преломления сердцевины, так что практически все световые лучи распространяются внутри сердцевины.

Сделать двухслойное волокно с различными показателями преломления не так уж сложно. Когда на затравочном стержне наращивают слой кварцевого стекла, в нужный момент (т.е. при получении его толщины, соответствующей сердцевине волокна) в газовую смесь, подаваемую в горелку, добавляют присадки, которые изменяют показатель преломления следующего слоя - оболочки. Таким путем можно получить и волокно, состоящее из нескольких слоев с различными показателями преломления.

Оптические волокна, у которых показатель преломления меняется скачком (ступенькой) при переходе от сердцевины к оболочке (или к оболочкам), назвали ступенчатыми.

Обычно показатели преломления сердцевины и оболочки различаются незначительно. Например, если показатель преломления сердцевины А?! = 1,465, то показатель преломления оболочки Пг = ,460. Рас-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 [ 38 ] 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

© 2000 - 2018 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.