Главная страница  История развития электросвязи 

1 2 3 4 5 6 7 8 9 10 11 12 13 [ 14 ] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

3 2. Дискретизация аналоговых сигналов

Ток в линии

))) О Микрофон Батарея

В линию


о) О Микрофон В линию Батарея

Ток в линии

Рис. 3.2. Дискретизация телефонного сигнала

Аналогичный подход лежит в процессе дискретизации телефонного сигнала. Если в цепь микрофона (рис. 3.2), где ток является непрерывной функцией времени, встроить электронный ключ и периодически на короткие мгновения замыкать его, то ток в цепи будет иметь вид узких импульсов с амплитудами, повторяющими форму непрерывного сигнала, и представлять собой ничто иное, как дискретный сигнал (см. рис. 3.2).

Интервал времени через который отсчитываются значения непрерывного сигнала, называется интервалом дискретизации. Обратная величина 1/ffl (обозначим ее ) называется частотой взятия отсчетов, или частотой дискретизации.

Отсчеты непрерывного сигнала, так же, как и отсчеты температуры, следует брать с такой частотой (или через такой интервал времени), чтобы успевать отследить все, даже самые быстрые, изменения сигнала. Иначе при восстановлении этого сигнала по дискретным отсчетам часть информации будет потеряна и форма восстановленного сигнала будет отличаться от формы исходного (рис. 3.3). Это означает, что звук на приеме будет восприниматься с искажениями.

Исходный непрерывный сигнал


Восстановленный сигнал

Щ Ч Я 5д t

Рис. 3.3. Искажение формы восстановленного сигнала



Чтобы разобраться с этим вопросом, начнем с колебания струны. Вы тронули струну, она стала вибрировать и своим движением то сжимать, то разряжать окружающий воздух или, другими словами, то повышать, то понижать его давление. Слои воздуха повышенного и пониженного давления начали разбегаться во все стороны от колеблющегося тела. Образовалась звуковая волна. Нечто похожее наблюдаем, когда бросаем камни в воду и смотрим на расходящиеся кругами волны. Гребни этих волн можно сравнить с областью сжатого воздуха, впадины - с областью разреженного воздуха.

Давление звуковой волны, распространяющейся от струны, изменяется во времени по закону синусоиды. Чтобы отследить все ее изменения, очевидно, достаточно брать отсчетные значения в моменты, соответствующие максимумам и минимумам синусоиды, т.е. с частотой, превышающей по крайней мере вдвое частоту звукового колебания. Например, если струна совершает 20 колебаний/с (частота 20 Гц), то максимальное звуковое давление будет наблюдаться через каждый 1/20 с, т.е. через 50 мс. Максимумы и минимумы кривой звукового давления разделены интервалами в 25 мс. Значит, отсчетные значения по кривой должны следовать не реже, чем через 25 мс, или с частотой 40 отсчетов/с (40 Гц). Обычно отсчетные значения на кривой берут с запасом : не в 2 раза чаще, чем колеблется звук, а, скажем, в 10 раз. В этом случае они очень хорошо передают форму кривой.

Интересен случай, когда звуковые волны излучают две одновременно колеблющиеся струны. На рис. 3.4 показаны три варианта: вторая струна колеблется в 2, 3 и 10 раз чаще, чем первая. Давления двух звуковых волн на пластину, помещенную на их пути, складываются. График результирующего давления уже не является синусоидой. Мы видим, что быстрые изменения в этой кривой обусловлены более высокочастотным колебанием (в данном случае колебанием второй струны). Для того чтобы отследить все быстрые изменения результирующего звукового давления, отсчетные значения следует брать с частотой, по крайней мере, вдвое превышающей частоту колебания второй струны. В последнем варианте частота взятия отсчетных значений должна превышать 400 Гц. Это означает, что отсчетные значения должны следовать не реже, чем через 1/400 = 0,0025 с = 2,5 мс, а лучше - еще чаще, например через 0,5 мс.

При изучении речи (см. п.1.3) мы выяснили, что голосовые связки у человека играют роль струн. Самое вьюокочастотное колебание этих струн , которое по рекомендации МСЭ необходимо еще учитывать, имеет частоту 3400 Гц. При переходе от аналогового речевого сигнала к цифровому это значение обычно округляют до 4000 Гц. Это значит, что при замене непрерывной кривой электрического тока на вы-



3 2 Дискретизация аналоговых сигналов

Давление звука

760 мм рт. ст.

Давление звука

760 мм рт. ст.

Давление звука

760 мм рт. ст.


Рис. 3.4. Дискретизация кривых звукового давления при различных частотах колебания струн

ходе микрофона телефонного аппарата отсчетными значениями последние необходимо брать с частотой 8000 Гц или, другими словами, не реже, чем через 1/8000 = 0,000125 с = 125 мкс.

Сравнение рис. 3.2 и рис. 2.9, б показывает, что при дискретизации сигнала узкими прямоугольными импульсами получается АИМ-сигнал, спектр которого изображен на рис. 2.10.

Спектр дискретного сигнала содержит спектр исходного сигнала (в диапазоне частот от О до F). Чтобы восстановить исходный сигнал из дискретного, достаточно пропустить дискретный сигнал через фильтр нижних частот с граничной частотой полосы пропускания F



1 2 3 4 5 6 7 8 9 10 11 12 13 [ 14 ] 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

© 2000 - 2018 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.