Главная страница  История развития электросвязи 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [ 16 ] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

Как видите, можно придумать много различных позиционных систем счисления, отличающихся только основаниями. И все они, вообще говоря, равнозначны: ни одна из них не имеет явных преимуществ перед другой!

Число 2 - это самое меньшее из чисел, которое можно взять за основание системы счисления. Поэтому в двоичной системе счисления всего две цифры: О и 1. Число в двоичной системе запишется так:

М = а -2 + а ,-2 -Ч... + а,-2 + ао.

Если в десятичной системе вес каждой позиции (или разряда) числа равен числу 10 в некоторой степени, то в двоичной системе вместо числа 10 используют число 2. Веса первых 13 позиций (разрядов) двоичного числа имеют следующие значения:

2 2° 2 2 2 2 2 2 2 2 2 2° 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

Попробуем записать уже привычное нам число (777)io в двоичной системе счисления, представляя его в виде разложения по степеням двойки и отбрасывая потом при записи сами степени:

(777)io =1 2+1-2+0-2+0-2Ч0-2+0-2+ +1-2+0-2+0-2 + 1 = (1100001001 )г.

Итак, в двоичной системе счисления вместо числа 777 приходится писать число 1100001001.

При записи числа в двоичной системе каждая позиция занята двоичной цифрой. Вместо двух слов двоичная цифра употребляют одно слово: бит . Мы уже упоминали, что оно произошло от английского bit, составленного из начальных и конечной букв словосочетания binary digit, что в переводе с английского означает двоичная цифра . С помощью одного бита можно записать только число О и 1, двух бит - числа от О до 3, трех бит - числа от О до 7, четырех бит - числа от О до 15 и т.д.

Десятичная запись:

0 1 2 3 4 5 6 7 8 9 10 11 ... 15 16 Двоичная запись:

О 1 10 11 100 101 110 111 1000 1001 1010 1011 ... 1111 10000

Чтобы записать числа от О до 1000, потребуется десять бит. В двоичной системе счисления даже сравнительно небольшое число занимает много позиций.



Как теперь перевести дискретные значения тока микрофона в цифровой двоичный код?

В XVIII веке крупнейший математик Л. Эйлер показал, что с помощью набора гирь 1, 2, 4, 8, и 16 кг можно взвесить любой груз с точностью до 1 кг. Взвешиваемый груз (обозначим его массу через М, кг) математически можно представить как

М = а -le + ag - S + ag - 4 + 31 - 2 + 30 -1 = = a -2 +аз-2+3 -2+3, -гЧао-2°.

где каждый коэффициент а = 1, если соответствующую гирю кладем на чашу весов, а = О, если этой гирей не пользуемся при взвешивании. Таким образом, процедура взвешивания сводится к представлению десятичного числа в двоичной системе счисления.

Поясним это на примере. Пусть нам нужно взвесить груз массой 21 кг. Поставим сначала на чашу весов самую большую гирю -массой 16 кг. Поскольку она не перетягивает груз, оставим гирю на чаше (34 = 1) и добавим следующую - 8 кг. Ясно, что в этом случае чаша весов с гирями перетянет чашу с грузом. Снимем эту гирю (Зз = 0) и установим гирю массой 4 кг. Проведя взвешивание до конца, мы увидим, что на весах остались гири массой 16, 4 и 1 кг. Значения коэффициентов а.-.а дают пятиразрядный двоичный код 10101 числа 21.

Механический груз мы взвешивали на механических весах. Считая отсчетное значение тока, появляющееся на выходе электронного кпюча, своего рода электрическим грузом , можно осуществить аналогичное взвешивание, но на этот раз электронным способом. Такие электронные весы назвали кодером (от английского coder - кодировщик). Допустим, отсчетное значение тока равно 21 мА. Роль электрических гирь в кодере выполняют эталонные токи величиной 16, 8, 4, 2 и 1 мА, которые вырабатываются специальным устройством. Каждая проба - подходит та или иная гиря либо нет - производится в строго установленные промежутки времени. Вся процедура взвешивания должна закончиться до прихода с электрического ключа следующего отсчетного значения тока (напомним, для звуков речи это время составляет всего 125 мкс). Итак, сначала отсчетное значение тока сравнивается с эталоном, равным 16 мА, и, поскольку оно больше эталона, на выходе кодера появляется импульс тока, что соответствует двоичной цифре 1. В следующий интервал времени к первому эталонному току добавляется второй величиной 8 мА. Теперь суммарный вес электрической гири равен 24 мА. Это больше отсчетного значения, поэтому второй эталонный генератор отключается. На данном интервале времени импульс тока на выходе кодера не появляется, что соот-



ветствует двоичной цифре 0. Думаем, читатели без труда завершат процедуру взвешивания.

Таким образом, за время взвешивания одного отсчетного значения кодер вырабатывает серию импульсов, полностью повторяющую двоичный код отсчетного значения микрофонного тока.

Нельзя не напомнить вновь еще об одном виде искажений, появляющихся при переводе отсчетного значения тока в двоичный код. Так, если кодированию подвергается отсчетное значение 21,7 мА, кодер все равно выдает код 10101, как и в случае целого значения 21 мА. Это и понятно, поскольку взвешивание проводилось с точностью до 1 мА - веса самой меньшей электрической гири . Такое округление чисел в технике называется квантованием, а разница между отсчетным значением тока и величиной, набираемой двоичным кодом, - ошибкой квантования.

Однако и искажения, вызванные ошибками квантования, можно если и не исключить совсем, то по крайней мере значительно уменьшить. Пусть, например, самая маленькая электрическая гиря будет иметь вес 0,125 мА. Тогда, взяв восемь гирь , соответствующие 16; 8; 4; 2; 1; 0,5; 0,25; 0,125 мА, можно будет взвешивать отсчетные значения тока с точностью до 0,125 мА. При этом число 21 представится 8-разрядным двоичным кодом 10101000, а число 21,7 - кодом 10101101, где последние три цифры означают добавку 0,625 к числу 21. Применение же 12-разрядного двоичного кода позволяет вместо числа 21,7 набрать весьма близкое к нему число 21,6921895.

Успехи в развитии интегральной микросхемотехники позволили объединить в корпусе одной небольшой микросхемы электронный ключ и кодер. Эта микросхема преобразует непрерывную (часто говорят аналоговую) электрическую величину в двоичный цифровой код и известна под названием аналого-цифрового преобразователя (АЦП). Выпускаются АЦП с 8-, 10- и 12-разрядными двоичными кодами.

Интересно подсчитать, какую скорость имеет цифровой поток, полученный из непрерывного телефонного сигнала путем дискретизации его через 125 мкс и 8-разрядного кодирования. За секунду ток микрофона изменяется 8000 раз. В 8-разрядном кодере каждое измеренное значение тока представляется двоичным словом из 8 бит. Значит, каждую секунду в линию отправляется 8000 8 = 64000 бит, т.е. скорость цифрового потока равна 64 кбит/с.

Кодовая комбинация из 8 бит, образующая двоичное слово, называется байтом. Символы в каждой кодовой комбинации отделены друг от друга временным интервалом . т.е. следует с частотой fr =ytr . Эта частота называется тактовой. Преобразование отсчетов непрерывного сигнала в двоичный код называется им-



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [ 16 ] 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

© 2000 - 2018 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.