Главная страница  История развития электросвязи 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 [ 28 ] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

Таблица 5.2. Правило проверки контрольных битов

Разряды контрольного двоичного числа

Номера битов, которые нужно сложить по модулю 2

А если ошибочно принят не информационный, а один из контрольных битов? Нетрудно убедиться, что обнаружена будет и эта ошибка. В самом деле, для принятой комбинации 1011,000 (ошибка в шестом разряде) двоичное число составит 110, что соответствует десятичному числу 6.

До сих пор речь шла о двоичном кодировании, т.е. о представлении цифровой информации числами двоичной системы счисления. Но можно применять системы счисления и с другими основаниями. Например, в ИКМ-аппаратуре успешно работает троичная система счисления, в которой используются три цифры: -1, О и +1. Цифре +1 соответствует импульс положительной полярности. О, как и ранее, -отсутствие импульса и, наконец, -1 представляется импульсом отрицательной полярности. Поскольку цифровой поток первоначально состоял из чередования двоичных символов О и 1, то осуществляется переход от двоичной системы счисления к троичной. В зависимости от правила перехода получаются различные коды.

Первый троичный код был изобретен в 1952 г. инженерами американской компании Ве11 . Преобразование двоичных чисел в троичные происходило в нем по довольно простому алгоритму: нули оставались без изменения, а единицы изменялись поочередно то на +1, то на -1. Например, цифровая двоичная последовательность 1100111001 приобретала после преобразования вид: +1 -100 +1 -1 +100 -1. Заметьте, данный алгоритм не удовлетворяет правилам перехода из двоичной системы счисления в троичную. Поэтому такой код называют квазитроичным (квази означает как бы, почти). У него есть еще одно название - код с чередованием полярности импульсов (ЧПИ).

Достоинством кода оказалось то, что наличие в нем избыточности, заложенной не в добавочных символах, как это наблюдалось в двоичных кодах, а в большем основании кода, не требует снижения скорости передачи цифрового потока: какой она была, такой и осталась. В то же время структура кода позволяет обнаруживать ошибки и подсчитывать их вероятность. Действительно, допустим, в троичной последовательности, приведенной выше, был неверно принят четвертый символ: вместо О восстановлена 1. Таким образом, на выходе регенератора имеется последовательность +1 -10 +1 +1 -1 +100 -1. Вы обратили внимание, что нарушилось правило чередования полярностей импульсов? Ведь в соответствии с принятым алгоритмом



Таблица 5.3. Кодирование сигналов троичным кодом

Двоичный

Троичный код 1

Двоичный

Троичный код

0000

1000

0001

1001

0010

1010

0011

1011

0100

1100

0101

1101

0110

1110

0111

+1 1

1111

формирования кода в нем не могут следовать подряд два импульса одной полярности. Значит, для определения вероятности ошибок на приемной станции следует подсчитать количество нарушений за время передачи чередования полярностей.

Этот простейший троичный код, изобретенный почти 40 лет назад, и по сей день является наиболее распространенным в ИКМ-системах передачи. В регенераторах таких систем добавляется еще один компаратор, который принимает решение о наличии или отсутствии отрицательного импульса, сравнивая его с отрицательным порогом. Впрочем, можно без переделки использовать и регенераторы двоичных сигналов, поскольку троичный код очень легко превратить в двоичный с помощью обычного выпрямителя. В подобном выпрямителе отрицательные импульсы переворачиваются и становятся положительными.

Добавим, что описанное преобразование двоичных цифр в троичные не является единственным. В табл. 5.3 показано, как 4-разрядные слова двоичного алфавита (т.е. алфавита, состоящего всего из двух символов О и 1) можно закодировать 3-разрядными словами на основе алфавита с тремя символами -1, О и +1. Заметьте, что теперь вместо каждых четырех импульсов нужно передавать в линию только три. Появляется возможность на месте каждого четвертого импульса цифрового потока передать дополнительные символы, т.е. увеличить объем передаваемой информации.

Мы ограничились рассмотрением лишь простейших кодов, обнаруживающих и исправляющих ошибки. Существует множество более сложных кодов, которые могут исправлять в принятой комбинации цифр не одну, а сразу несколько ошибок.

Контрольные вопросы

1. С какой целью осуществляется мультиплексирование цифровых потоков в системах передачи?



Список литературы

1. Крук Б.И., Попов Г.Н.... И мир загадочный под занавесом цифр: Цифровая связь. -2-е изд., испр. - Новосибирск: ЦЭРИС, 2001. - 264 с.

2. Системы электросвязи: Учеб. для вузов / Г.П. Катунин, Б.И. Крук, В.П. Шувалов и др.; Под ред. В.П. Шувалова. - М.: Радио и связь, 1987. - 512 с.

3. Левин Л.С., Плоткин М.А. Цифровые системы передачи информации. - М.: Радио и связь, 1982.-216 с.

4. Аппаратура ИКМ-30 / Под ред. Ю.П. Иванова, Л.С. Левина. - М.: Радио и связь, 1983.-184 с.

2. В чем заключается лринцил чередования битов при объединении цифровых потоков?

3. В чем заключается лринцил чередования кодовых комбинаций при объединении цифровых потоков?

4. Зачем применяются тактовая и цикловая синхронизации в цифровых системах передачи?

5. По какому принципу осуществляется регенерация цифрового сигнала?

6. Зачем используется помехоустойчивое кодирование?



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 [ 28 ] 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

© 2000 - 2024 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.