Главная страница  Сети мобильной связи и телекоммуникации 

1 2 [ 3 ] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

Колебания электронов в антенне создаются источником периодически изменяющейся ЭДС с периодом Т. Если в некоторый момент поле у антенны имело максимальное значение, то такое же значение оно будет иметь спустя время Т. За это время существовавшее в начальный момент у антенны электромагнитное поле переместится на расстояние X = VT.

Минимальное расстояние между двумя точками пространства, поле в которых имеет одинаковое значение, называется длиной волны. Длина волны X зависит от скорости ее распространения и периода колебаний электронов в антенне. Так как частота тока f= 1/Г, то длина волны X = VIf.

В табл. 1.1 сделана попытка систематизировать сведения о главных событиях в области радиотехники, начиная с опытов Генриха Герца.

1.2. Общие принципы организации радиосвязи

Может возникнуть вопрос, нельзя ли для того чтобы передать с помощью радиоволн человеческую речь или музыку, звуковые колебания превратить в электрические, а последние с помощью антенны преобразовать в электромагнитные волны, чтобы затем в приемном пункте электромагнитные волны снова превратить в звуковые?

Звуковые колебания, воспринимаемые человеческим слухом, лежат обычно в полосе частот от 20 до 20 ООО Гц, т.е. такие колебания создадут волны длиной от 15 ООО до 15 км. Антенны же могут эффективно излучать электромагнитные колебания только тогда, когда их размеры соизмеримы с длиной волны.

Однако сами по себе колебания высокой частоты информацию не несут. Посылать их по линии связи бесполезно. Так же бесполезно, как посылать телеграмму с адресом, но без текста: она дойдет сравнительно быстро, но ее получатель сведений не получит.

Таким образом, в нашем распоряжении есть сообщение, содержащее информацию, но не способное дойти до получателя. Есть и высокочастотное колебание, которое найдет своего получателя, но не принесет ему информацию. Как соединить вместе необходимые качества сообщения и безынформативного колебания?

Единственный способ - попытаться наложить на высокочастотное колебание отпечаток сообщения, т.е. использовать высокочастотное колебание лишь в роли переносчика сообщения, содержащего информацию. С этой целью нужно изменять один или несколько признаков (параметров) несущего колебания в соответствии с изменениями сообщения. Тогда мы получим высокочастотное колебание с меняющимися во времени параметрами по закону передаваемого сообщения. Рассмотренный процесс называется модуляцией.

О па

0) m

а. о

<->

Радиопередающее устройство

М УМК

Радиоприемное устройство

о й at m о. о

- 3-

Рис. 1.1. Структурная схема радиолинии

На рис. 1.1 приведена упрощенная структурная схема радиолинии. Передаваемое сообщение поступает на преобразователь (микрофон, телевизионную камеру или телеграфный аппарат), который преобразует его в электрический сигнал. Последний поступает на радиопередающее устройство, состоящее из модулятора (М), синтезатора несущей частоты (СЧ) и усилителя модулированных колебаний (УМК). С помощью модулятора один из параметров высокочастотного колебания изменяется по закону передаваемого сообщения. С помощью антенны (А) энергия радиочастотных колебаний передатчика излучается в тракт распространения радиоволн.

На приемном конце радиоволны наводят ЭДС в антенне. Радиоприемное устройство с помощью селективных (избирательных) цепей (СЦ) отфильтровывает сигналы от помех и других радиостанций. В детекторе (Д) происходит процесс, обратный модуляции, - выделение из модулированных колебаний исходного электрического сигнала, который управлял радиопередатчиком. С помощью преобразователя (громкоговорителя, телеграфного аппарата, приемной телевизионной трубки) электрический сигнал связи преобразуется в сообщение, доставляемое абоненту.

Рассмотренная радиолиния обеспечивает одностороннюю передачу сообщения, что приемлемо только в службах оповещения. Одностороннюю радиосвязь представляет собой, в сущности, и радиовещание, хотя в этом случае прием ведется не в одном, а во множестве пунктов. Прием во многих пунктах ведется также при циркулярной передаче: распоряжения передаются многим исполнителям; сообщения передаются из пресс-центра редакциям газет и т.д.

Для организации двусторонней радиосвязи в каждом пункте надо иметь и передатчик, и приемник. Если при этом передача и прием на каждой радиостанции осуществляются поочередно, то такая радиосвязь называется симплексной (рис. 1.2, а). Двусторонняя радиосвязь, при которой связь между радиостанциями реализуется одновременно, называется дуплексной (см. рис. 1.2, б).



А А

si/ \U

\1> -2 \1/

\V ST si/

Рис. 1.2. Структурная схема организации радиосвязи; а - симплексной; б-дуплексной

При дуплексной радиосвязи передача в одном и другом направлениях ведется, как правило, на разных несущих частотах. Это делается для ТОГО, чтобы приемник принимал сигналы только от передатчика с противоположного пункта и не принимал сигналов собственного передатчика.

Для радиосвязи на большие расстояния применяют радиопередатчики МОЩНОСТЬЮ в десятки и сотни киловатт. Поэтому, хотя при дуплексной связи приемник настраивается не на ту частоту, на которую настроен свой передатчик, трудно обеспечить его нормальную работу вблизи МОЩНОГО передатчика. Исходя из этого, приемник и передатчик приходится размещать на расстоянии в десятки километров друг ОТ друга.

Симплексная связь используется, как правило, при наличии относительно небольших информационных потоков. Для объектов С большой нагрузкой характерна дуплексная связь.

Если необходимо иметь радиосвязь с большим числом объектов, ТО организуется так называемая радиосеть (рис. 1.3). Одна радиостанция, называемая главной (ГР), может передавать сообщения как для ОДНОГО, так и для нескольких подчиненных объектов. Ее радист-оператор следит за порядком в радиосети и устанавливает очередность работы на передачу подчиненных станций (ПР). Последние при соответствующем разрешении могут обмениваться информацией не только С ГР, НО и между собой. Этот вариант организации радиосети может быть построен на основе как сложного симплекса (см. рис, 1.3, а), так и СЛОЖНОГО дуплекса (см. рис. 1.3, б). В первом случае возможно использование совмещенных приемопередатчиков и общей рабочей радиоволны (частоты). Во втором случае ГР ведет передачу на одной частоте, а принимает на нескольких (по числу подчиненных радиостанций). Несмотря на различие в частотах приема и передачи, здесь, как и при простом дуплексе, необходимо располагать приемник и передатчик на удалении друг от друга. Иначе из-за помех, создаваемых

h f-

ПР2 о

Рис. 1.3. Структурные схемы радиосетей; а - сложный симплекс; б - сложный дуплекс

передающим устройством, одновременный прием сообщений может стать невозможным.

Центры крупных промышленных районов соединяются линиями радиосвязи СО многими пунктами. В этих условиях передатчики и передающие антенны располагают на радиостанции, которую называют передающим радиоцентром. Приемники и приемные антенны располагают на приемном радиоцентре.

Процессы в электроэнергетических сооружениях, на электрифицированных железных дорогах, в электрических установках и бытовых электроприборах, множество которых имеется в городах, связаны с излучением электромагнитных волн. Поскольку эти излучения могут быть помехами радиоприему, приемный радиоцентр обычно помещается в стороне от населенных пунктов и железных дорог. Для со-



\ 4 -i-

\/ \/ \/

Пер1

Пер2

nepN

\/ \/

ElllllZIiri

Рис. 1.4. Схема комплекса средств радиосвязи

единения источников сообщения с радиопередатчиками и радиоприемниками и контроля качества радиосвязи в городах оборудуют радиобюро.

Схема комплекса средств радиосвязи, обслуживающих административный или хозяйственный центр, изображена на рис. 1.4. Здесь: 1 - передающий радиоцентр с радиопередающими устройствами Пер1, Пер2, ПерЫ; 2 - приемный радиоцентр с радиоприемными устройствами Пр1, Пр2, flpN; 3 - город, который связан с радиоцентрами соединительными линиями связи 4 и 5. По линиям 4 на радиоцентр 1 поступают передаваемые сигналы, а по линиям 5 в город передаются сигналы, принятые радиоцентром 2; по этим же линиям передаются сигналы дистанционного контроля работы радиоцентров и сигналы дистанционного управления оборудованием. Радиобюро 6 соединено линиями связи с телеграфной и фототелеграфной аппаратными центрального телеграфа 7 и 8, междугородной телефонной станцией 9, а также радиовещательной аппаратной 10. Радиовещательная аппаратная служит для обмена радиовещательными программами с другими городами или странами. Аппаратные связаны с источниками передаваемых сообщений, такими как сети абонентского телеграфа, телефонные и др.

1.3. Особенности распространения и использования радиоволн различных видов

Виды радиоволн. В соответствии с Регламентом радиосвязи радиоспектр подразделяется на девять диапазонов. Разделение радиоволн на диапазоны в первую очередь связано с особенностями их

Таблица 1.2. Классификация видов радиоволн

Номер полосы частотного спектра

Метрическое наименование

Диапазон длин

Диапазон частот

Мириаметровые

100. ..10 км

3...30 кГц

Километровые

10...1 км

30...300 кГц

Гекгометровые

1...0,1 км

300...3000 кГц

Декаметровые

100...10м

3...30 МГц

Метровые

10...1 м

30...300 МГц

Дециметровые

1...0,1 м

300...3000 МГц

Сантиметровые

1...10CM

3...30 ГГц

Миллиметровые

1...10 мм

30...300 ГГц

Децимиллиметровые

0,1...1 мм

300...3000 ГГц

распространения и использования. Принятая в настоящее время классификация видов радиоволн приведена в табл. 1.2.

Наряду с перечисленными названиями и обозначениями пользуются другими условными названиями для полос частот, выделяемых для тех или иных частных применений: сверхдлинные волны (СДВ), длинные (ДВ), средние (СВ), короткие (КВ), ультракороткие (УКВ). Соответствующие сокращенные обозначения можно видеть на шкалах настройки радиовещательных приемников. Сверхдлинные волны в целом соответствуют мириаметровым, длинные - километровым, средние - гектометровым, короткие - метровым, а ультракороткие волны объединяют диапазон с номерами 8-12. Иногда к УКВ относят и дециметровые волны. В данном учебнике используются и эти названия диапазонов.

Общие свойства радиоволн. Распространение радиоволн в земном пространстве зависит от свойств поверхности земли и свойств атмосферы. Условия распространения радиоволн вдоль поверхности земли в значительной мере зависят от рельефа местности, электрических параметров земной поверхности и длины волны. Подобно другим волнам радиоволнам свойственна дифракция, т.е. явление огибания препятствий. Наиболее сильно дифракция сказывается в случае, когда геометрические размеры препятствий соизмеримы с длиной волны. Радиоволны, распространяющиеся у поверхности земли и частично за счет дифракции огибающие выпуклость земного шара, называются земными, или поверхностными радиоволнами.

Атмосферу земли нельзя считать однородной средой. Давление, плотность, влажность, диэлектрическая проницаемость и другие параметры в разных объемах воздушного слоя имеют различные значения. По этим причинам скорости распространения в различных объемах неодинаковы и зависят от длины волны. Траектория радиоволн



1 2 [ 3 ] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

© 2000 - 2024 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.