Главная страница  Волоконная оптика 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 [ 18 ] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Входной импульс 1 2 3

Вькодной импульс


Расширение от дисперсии сигнала

1 2 3


Потер* сигнала

Рис. 5.4. Расширена импул1>са

Волокно со сглаженным индексом

Одна из возможностей уменьшения модовой дисперсии - использование сглаженного профиля показателя преломления. В этом случае ядро состоит из большого числа концентрических колец, похожих на годовые кольца дерева. При удалении от центральной оси ядра показатель преломления каждого слоя снижается. На рис. 5.5 представлена структура волоконного ядра.

Рис. 5.5. Концентрические вни уменьшения показателя преломления в волокне со сглаженным индексом (фотофафия предоставлена AT&T Bell Laboratories)

Напомним, что свет движется быстрее по среде с меньшим показателем преломления. Поэтому чем дальше расположена траектория светового луча от центра, тем быстрее он движется. Каждый слой ядра отражает свет. В отличие от ситуации со ступенчатым профилем показателя преломления, когда свет отражается от резкой границы между ядром и оптической обо-



лочкой, здесь свет постоянно и более плавно испытывает отражение от каждого слоя ядра. При этом его траектория отклоняется к центру и становится похожей на синусоидальную. Лучи, которые проходят более длинные дистанции, делают это большей частью по участкам с меньшим показателем преломления, двигаясь при этом быстрее. Свет, распространяюш;ийся вдоль центральной оси, проходит наименьшую дистанцию, но с минимальной скоростью. В итоге все лучи достигают противоположного конца волокна одновременно. Использование сглаженного профиля показателя преломления приводит к уменьшению дисперсии до 1 н сек/км и менее.

Популярные виды данного типа волокон имеют диаметры ядер 50, 62.5 и 85 микрон, а диаметр оптической оболочки 125 микрон. Эти волокна используются там, где требуется широкие полосы пропускания, в частности, в передаче телевизионного сигнала, локальных сетях, компьютерах и т.д. Волокно 62.5/125 является наиболее популярным и широко распространенным.

Одномодовое волокно

Другой путь уменьшения модовой дисперсии заключается в уменьшении диаметра ядра до тех пор, пока волокно не станет эффективно передавать только одну моду. Одномодовое волокно имеет чрезвычайно малый диаметр - от 5 до 10 микрон. Сгандартный диаметр переходного слоя составляет 125 микрон и выбран, исходя из следуюпщх соображений:

1. Оптическая оболочка должна быгь в 10 раз толш;е, чем ядро одномо-дового волокна. Для ядра в 8 мкм она должна быгь не менее 80 мкм.

2. Данный размер совпадает с размером оптической оболочки для волокна со ступенчатым профилем показателя преломления, что обеспечивает стандартизацию размеров волокон.

3. Данный выбор облегчает монтажные работы, так как делает волокно менее хрупким, а его диаметр достаточно большим, что позволяет обрабатывать волокно вручную.

Поскольку данное волокно переносит только одну моду, модовая дисперсия в нем отсутствует.

Одномодовое волокно позволяет легко достичь ширины полосы пропускания от 50 до 100 ГТц-км. В настоящее время волокна имеют полосы пропускания в несколько гигагерц и позволяют передавать сигнал на десятки километров. До 1985 года наиболее крупными были коммерческие волоконно-оптические системы системы передачи цифровой телефонии, имевшие скорость передачи информации 417 Мб/сек. Эти системы позволяли обслуживать одновременно 6048 телефонных переговоров и работали на одномо-довом волокне, позволявшем передавать сигнал на 35 километров без повторителя. К концу 1992 года возможности телефонных линий выросли до 10 Гб/сек и 130 ООО звуковых каналов.

Такой рост возможностей волоконных линий происходил за счет улучшения электронных систем, работаюпщх на обоих концах, а не за счет улучшения кабельной системы. Характеристики одномодовой системы ограничены возможностями электроники, а не волокна. Еще одно преимущество одномодового волокна заключается в том, что оно может быгь про-



ложено один раз, с тем чтобы в дальнейшем возможности передающей линии возрастали по мере развития и замены электронных устройств. Это позволяет экономить средства на прокладке новой более современной передающей линии и добиваться увеличения скорости передачи наиболее экономным способом.

Граничные значения параметров, начиная с которых волокно работает в одномодовом режиме, зависят от длины волны несущего света. Пусть длина волны 820 нм соответствует многомодовому режиму работы волокна. По мере роста длины волны света все меньшее количество мод выживает, пока не остается только одна. Одномодовый режим работы волокна начинается:, когда длина волны света приближается к диаметру ядра. При 1300 нм, например, в волокне остается только одна мода и волокно становится одномодовым.

В зависимости от конструкции различные виды волокон имеют специфические длины волн, называемые пороговыми длинами. Излучение с длиной волны, превосходящей пороговую длину, распространяется в одномодовом режиме. Волокно, предназначенное для работы в одномодовом режиме на длине волны в 1300 нм, имеет пороговую длину около 1200 нм.

Принцип работы одномодового волокна ненамного сложнее обьганого распространения луча вдоль ядра. Использование геометрической оптики для описания работы данного вида волокна не совсем корректно, так как в данном подходе не учитывается распределение электромагнитной энергии внутри волокна. Некоторая часть электромагнитного излучения переносится в оптической оболочке, как показано на рис. 5.6. Кроме того, диаметр светового пучка, вводимого в волокно, превышает диаметр его ядра. Для определения поперечного размера светового пятна в волокне используется термин - диаметр модового поля. В отличие от многомодового, в одномодовом волокне излучение присутствует не только внутри ядра. Поэтому диаметр модового поля лучше характеризует излучение, чем диаметр ядра.

Многомодовое волокно


Одномодовое волокно

Рис. 5.6. Оптическая мощность в многомодрвом и одномодовом волокне (рисунок предоставлен CominQ Glass Works)



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 [ 18 ] 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

© 2000 - 2022 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.