Главная страница  Взаимодействие нетривиальных процессов 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 [ 66 ] 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

ГЛАВА 9

Блокирование записей

9.1. Введение

Блокировки чтения-записи, описанные в предыдущей главе, представляют собой хранящиеся в памяти переменные типа pthread rwl ock t. Эти переменные могут использоваться потоками одного процесса (этот режим работы установлен по умолчанию) либо несколькими процессами при условии, что переменные располагаются в разделяемой этими процессами памяти и при их инициализации был установлен атрибут PTHREAD PROCESS SHARED.

В этой главе описан усовершенствованный тип блокировки чтения-записи, который может использоваться родственными и неродственными процессами при совместном доступе к файлу. Обращение к блокируемому файлу осуществляется через его дескриптор, а функция для работы с блокировкой называется fcntl. Такой тип блокировки обычно хранится в ядре, причем информация о владельце блокировки хранится в виде его идентификатора процесса. Таким образом, блокировки записей fcntl могут использоваться только несколькими процессами, но не отдельными потоками одного процесса.

В этой главе мы в первый раз встретимся с нашим примером на увеличение последовательного номера. Рассмотрим следующую ситуацию, с которой столкнулись, например, разработчики спулера печати для Unix (команда 1рг в BSD и 1 р в System V). Процесс, помещающий задания в очередь печати для последующей их обработки другим процессом, должен присваивать каждому из них уникальный последовательный номер. Идентификатор процесса, уникальный во время его выполнения, не может использоваться как последовательный номер, поскольку задание может просуществовать достаточно долго для того, чтобы этот идентификатор был повторно использован другим процессом. Процесс может также отправить на печать несколько заданий, каждому из которых нужно будет присвоить уникальный номер. Метод, используемый спулерами печати, заключается в том, чтобы хранить очередной порядковый номер задания для каждого принтера в отдельном файле. Этот файл содержит всего одну строку с порядковым номером в формате ASCH. Каждый процесс, которому нужно воспользоваться этим номером, должен выполнить следующие три действия:

1. Считать порядковый номер из файла.

2. Использовать этот номер.

3. Увеличить его на единицу и записать обратно в файл.



Проблема в том, что пока один процесс выполняет эти три действия, другой процесс может параллельно делать то же самое. В итоге возникнет полный беспорядок с номерами, как мы увидим в следующих примерах.

ПРИМЕЧАНИЕ -

Описанная выше проблема называется проблемой взаимных исключений. Она может быть решена с использованием взаимных исключений из главы 7 или блокировок чтения-записи из главы 8. Различие состоит в том, что здесь мы предполагаем неродственность процессов, что усложняет использование предложенных выше методов. Мы могли бы использовать разделяемую память (подробно об этом говорится в четвертой части книги), поместив в нее переменную синхронизации одного из этих типов, но для неродственных процессов проще воспользоваться блокировкой fcntl. Другим фактором в данном случае стало то, что проблема со спулерами печати возникла задолго до появления взаимных исключений, условных переменных и блокировок чтения-записи. Блокировка записей была добавлена в Unix в начале 80-х, до того как появились концепции разделяемой памяти и программных потоков.

Таким образом, процессу нужно заблокировать файл, чтобы никакой другой процесс не мог получить к нему доступ, пока первый выполняет свои три действия. В листинге 9.2 приведен текст простой программы, выполняющей соответствующие действия. Функции ту 1 оск и iTiy unl ock обеспечивают блокирование и разблокирование файла в соответствующие моменты. Мы приведем несколько возможных вариантов реализации этих функций. 20 Каждый раз при прохождении цикла мы выводим имя программы (argv[0]) перед порядковым номером, поскольку эта функция main будет использоваться с различными версиями функций блокировки и нам бы хотелось видеть, какая версия программы выводит данную последовательность порядковых номеров.

ПРИМЕЧАНИЕ -

Вывод идентификатора процесса требует преобразования переменной типа pid t к типу long и последующего использования строки формата %ld. Проблема тут в том, что идентификатор процесса принадлежит к одному из целых типов, но мы не знаем, к какому именно, поэтому предполагается наиболее вместительный - long. Если бы мы предположили, что идентификатор имеет тип int и использовали бы строку %d, а pid t на самом деле являлся бы типом long, код мог бы работать неправильно.

Посмотрим, что будет, если не использовать блокировку. В листинге 9.1 приведены версии функций ту 1оск и my unlock, которые вообще ничего не делают.

Листинг 9.1. Функции, не осуществляющие блокировку

lock/locknone.c

1 void

2 myjockdnt fd)

4 return:

6 void



7 my unlock(int fd)

9 return: 10 }

Листинг 9.2. Функция main для примеров с блокировкой файла

lock/lockmain.c

1 linclude unpipc.h

2 Idefine SEQFILE seqno /* имя файла */

3 void myjock(int). rny unlock(int):

4 int

5 mainCint argc. char **argv)

7 int fd;

8 long i, seqno;

9 pid t pid;

10 ssize t n;

11 char line[MAXLINE + 1]:

12 pid = getpidO;

13 fd - Open(SEQFILE. 0 RDWR. FILE MOOE):

14 for (i = 0; i < 20: i++) {

15 myjock(fd): /* блокируем файл */

16 Lseek(fd. OL. SEEK SET): /* переходим к его началу */

17 n = ReadCfd. line. MAXLINE):

18 line[n] = \0: /* завершающий 0 для sscanf */

19 n = sscanfdine. IdNn . &seqno):

20 printf( *s: pid = *ld. seql = *ld\n . argv[0]. (long) pid. seqno):

21 seqno++; /* увеличиваем порядковый номер */

22 snprintfdine. sizeof(line). *ld\n . seqno):

23 Lseek(fd. OL. SEEK SET): /* переходим на начало перед записью */

24 Write(fd. line, strlen(line)):

25 rny unlock(fd): /* разблокируем файл */

26 }

27 exit(O):

28 }

Если начальное значение порядкового номера в файле было 1 и был запущен только один экземпляр программы, мы увидим следующий результат: Solaris % Icjcknone

locknone

pid =

15491.

seql =

locknone

pid =

15491.

seql =

locknone

pid =

15491.

seql =

locknone

pid =

15491.

seql =

locknone

pid =

15491.

seql =

locknone

pid -

15491.

seql =

locknone

pid =

15491.

seql =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 [ 66 ] 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

© 2000 - 2024 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.