Главная страница  Взаимодействие нетривиальных процессов 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 [ 108 ] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

сдвиг: О индекс: О

размер файла

файл

4999

4999 5000

8191 8192

размер, указываемый при вызове mmap

14999

остаток I последней I

- к этой области можно обращаться -

обращение приводит к отправке SIGSEGV

обращение приводит к отправке SIGSEGV

Рис. 12.9. Размер области памяти больше размера отображаемого файла

PAGESIZE 8192 ptr[0] = О ptr[8191] = О Мегпогу fault (coreduttip) alpha Is -1 foo

-rw-r--r-- 1 rstevens operator 5000 Mar 21 08:40 foo

Мы все так же можем обратиться к памяти за пределами отображенного файла, но не выходя за границы страницы памяти (индексы с 5000 по 8191). Обращение к ptr[8192] приводит к отправке SIGSEGV, на что мы и рассчитывали.

Вторая ситуация: размер области памяти (15 ООО байт) превышает размер файла (5000 байт):

Solaris % т foo

Solaris % testl foo 5000 15000

ptr[0] = 0 ptr[4095] = 0 ptr[4096] = 0 ptr[8191] = 0 Bus Error(coreduttip) Solaris % Is -1 foo

-rw-r--r-- 1 rstevens otherl 5000 Mar 20 17:37 foo

Полученный результат аналогичен результату предыдущего примера, в котором размер файла равнялся размеру области отображения (5000 байт). Однако в данном примере генерируется сигнал SIGBUS (о чем интерпретатор оповещает сообщением Bus Error), тогда как в предыдущем примере отправлялся сигнал SIGSEGV. Отличие в том, что SIGBUS означает выход за границы отображенного файла внутри области отображения, а SIGSEGV - выход за границы области. Этим примером мы показали, что ядро хранит информацию о размере отображенного объекта, даже несмотря на то, что его дескриптор закрыт. Ядро позволяет указать при вызове mmap размер области памяти, больший размера файла, но не позволяет обратиться к адресам в этой области (кроме остатка последней страницы, в которой еще имеется содержимое собственно файла - индексы с 5000 по 8191 в данном случае). На рис. 12.9 приведена иллюстрация к этому примеру.



Следующая программа приведена в листинге 12.7. Ею мы иллюстрируем типичные методы работы с увеличивающимися в размерах файлами: при отображении в память заказывается большой размер области, текущий размер файла учитывается при всех операциях (чтобы не выйти за его пределы в памяти), а затем он просто увеличивается, по мере того как в файл записываются данные.

Листинг 12.7. Отображение увеличивающегося файла в память

shtti/test2.c

1 finclude unpipc.h

2 fdefine FILE test.data

3 fdefine SIZE 32768

4 int

5 maindnt argc. char **argv)

7 int fd. i:

8 char *ptr;

9 /* открытие, создание, урезание и установка размера файла, вызов гшар */

10 fd = Open (FILE. 0 RDWR 0 CREAT OJRUNC. FILE MODE):

11 ptr = Mmap(NULL. SIZE. PROTJEAD PROTJRITE. MAPJHARED, fd. 0);

12 for (i = 4096: i <= SIZE: i += 4096) {

13 printf( setting file size to d\n . i):

14 Ftruncate(fd. i);

15 printf( ptr[ d] = %й\п , i-1, ptr[i-l]):

16 }

17 exit(O):

18 }

Открытие файла

9-11 Мы создаем файл, если он еще не существует, или урезаем его до нулевой длины, если он существует. Затем файл отображается в область объемом 32 768 байт, хотя его текущий размер равен нулю.

Увеличение размера файла

12-16 Мы увеличиваем размер файла на 4096 байт за один вызов ftruncate (раздел 13.3) и считываем из него последний байт в каждом проходе цикла.

Запустив эту программу, мы убедимся в возможности обращаться к новым данным по мере роста файла:

alpha Is -1 test,data

test.data: No such file or directory

alpha % test2

setting file size to 4096

ptr[4095] = 0

setting file size to 8192

ptr[8191] = 0

setting file size to 12288 ptr[12287] = 0 setting file size to 163B4 ptr[16383] = 0



setting file size to 20480

ptr[20479] 0

setting file size to 24576

ptr[24575] = 0

setting file size to 28672

ptr[28671] = 0

setting file size to 32768

ptr[32767] 0

alpha % Is -1 test.data

-m-r-r-- 1 rstevens otherl 32768 Mar 20 17:53 test.data

Этот пример показывает, что ядро всегда следит за размером отображаемого в память объекта (в данном примере это файл test .data), и мы всегда имеем возможность обратиться к байтам, лежащим внутри области, ограниченной размером файла и размером отображения. Те же результаты получаются при запуске этой программы в Solaris 2.6.

В этом разделе мы работали с отображением файлов в память с помощью mmap. в упражнении 13.1 нам придется немного изменить две нащих программы для работы с разделяемой памятью Posix, и мы получим те же результаты.

12.7. Резюме

Разделяемая память представляет собой самую быстродействующую форму IPC, потому что данные из разделяемой области памяти доступны всем потокам и процессам, с ней работающим. Обычно для координации совместных действий потоков и процессов, использующих разделяемую память, требуется некоторая форма синхронизации.

В этой главе мы подробно рассмотрели свойства функции mmap и отображение обычных файлов в память, потому что это один из способов обеспечения взаимодействия между неродственными процессами. После отображения файла в память для обращения к нему больше не нужно использовать вызовы read, write и 1 seek - вместо этого можно напрямую работать с ячейками памяти, относящимися к той области, указатель на которую возвращает mmap. Замена явных операций с файлом на обращение к ячейкам памяти может упростить программу и в некоторых случаях увеличить быстродействие.

Если необходимо совместное использование области памяти после вызова fork, можно упростить рещение этой задачи, используя неименованное отображение в память. Для этого в ядрах Berkeley при вызове mmap указывается флаг MAP ANON, а в ядрах SVR4 производится отображение специального файла /dev/zero.

Причина, по которой мы столь детально разобрали работу mmap, заключается в том, что отображение файлов в память часто оказывается очень полезным, а также в том, что mmap используется для работы с разделяемой памятью Posix, которая является предметом изучения следующей главы.

Для работы с памятью стандартом Posix определено еще четыре функции:

ш ml ockal 1 делает всю память процесса резидентной; muni ockal 1 снимает эту блокировку;

ml оск делает определенный диапазон адресов процесса резидентным. Аргументами функции являются начальный адрес и длина области. Функция muni оск разблокирует указываемую область памяти.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 [ 108 ] 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186

© 2000 - 2024 ULTRASONEX-AMFODENT.RU.
Копирование материалов разрешено исключительно при условии цититирования.